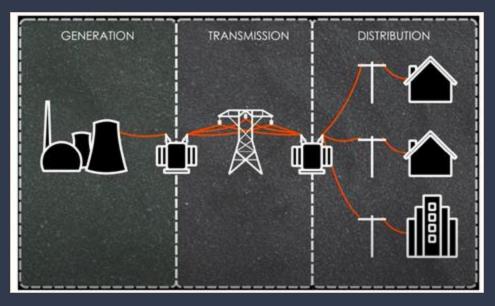
Reinventing The Power Grid


Grid Gators P.K. Yonge Team 2 Names of team members: Nevan Moran, Mason O'Quinn, Jude Newbutt, Max Goldberg Mentor: Erin Joyner Teacher: Damien Boada

Introduction

- •As communities change, **traditional** power grids are **no longer as effective** as they used to be.
- Our team set out to **reimagine** how a smart grid can be implemented, and how it will function alongside the help of **AI**.
- •We used a **data-driven** approach to make the grid more **resilient** and **adaptable**.

How can we Improve Traditional Grids?

Distribution, efficiency, and adaptability.

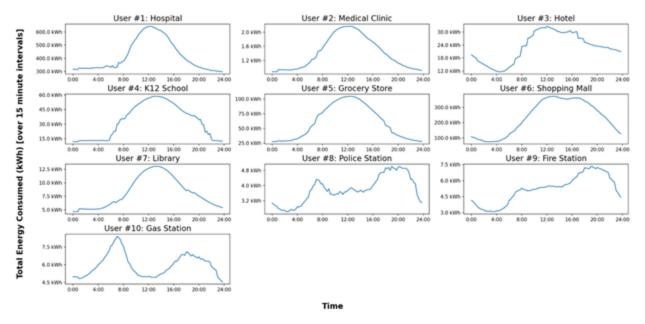
• A power grid is a **network** of **interconnected services** that deliver electricity from **producers** to **consumers**. The three main parts are: generation, transmission, and distribution.

•We aimed to make a **resilient**, **efficient** and **adaptive** grid. By **integrating AI**, decisions can be made **quickly** and backed by **data**.

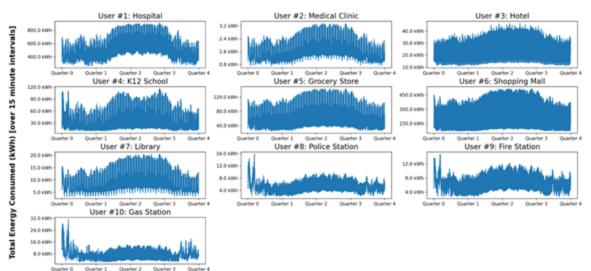
Fig. [1] Power Distribution Process.

Describing the Community

- We decided to focus on **prioritizing different** user types based on how essential they were towards public health, safety, and **power restoration** during an emergency.
- When designing our grid, our goal was to get power to the most amount of people as **quickly as possible**. This made us push more priority to getting power to places with **high population density**.


- 1. Power Plants
- 2. Hospitals, Medical Centers
- 3. Emergency Response
- 4. Water Treatment Plants
- 5. Communication

- 6. Pharmacies
- 7. Gas Stations
- 8. Shelters/Community
- Centers
- 9. Transportation
- 10. Banks and ATMs


Power Needs in our Community

- Essential services such as emergency services require uninterrupted power, making them a top priority.
- High-priority user types were in similar areas, while residential and shopping users were spread out.
- These differences made us change how we designed the microgrids to keep all user types with some power, as **location matters**.

Daily Energy Consumption for 10 Selected User Types

Yearly Energy Consumption for 10 Selected User Types


Utilizing AI to Optimize Power Distribution

- Our AI processes power consumption data across different user types to detect patterns, predict peak demands, and prioritize critical services. This helps us make informed decisions during outages.
- In power restoration, there were tradeoffs. Such as prioritizing emergency services over nonessential residential areas during outages.
- Power restoration isn't immediate, AI considers the impacts and restores essential services first and then residential.

		12:00 PM - 5:59 PM - Adjustment	
User	Disaster Power Distribution (% Max))istributed Power (kW	Normal Max Power Demand from 12A-6A
User 1	80.0	30952.2	51498.4
User 2	2.0	773.8	34.7
User 3	3.5	1354.2	1959.6
User 4	1.0	386.9	939.8
User 5	9.2	3559.5	5851.1
User 6	2.6	1005.9	2978.8
User 7	0.2	77.4	364.6
User 8	0.5	193.5	150.4
User 9	0.5	193.5	54.6
User 10	0.5	193.5	520.7
	100.00	38690.29	

Developing Microgrids for our Community

- When designing our microgrids, we considered the prioritization and power consumption of each user type.
- We considered about how each user could help each other across the microgrid.
- The systems of smaller microgrids inside our main smart-grid allows for more targeted power restoration.
- These smaller grids ensure that the main grid is decentralized, micro-grids to get power without relying on the whole grid.

Main Takeaways

- Our team had to redesign the electrical grid into a smart-grid that is resilient to severe weather, and can adaptively provide power.
- By utilizing a decentralized system with Al-driven decision making, this grid is able to adapt to user demands and weather conditions incredibly quickly.

- In the future, problems such as higher population density, climate change, and increasing dependence on technology will pose problems to current electrical grids.
- To improve our microgrid system, we would improve the Al's accuracy with more training, resulting in it being able to adjust to unpredictable weather and changing problems in our community.

Sources and References

- [1] H. Ahmed, "Improvements in Grid Connectivity to Bring Renewables to Where the Supply Is," PSCI, Jul. 11, 2022.
 - <u>https://psci.princeton.edu/tips/2022/7/11/improvements-in-grid-connectivity-to-bring-renewables-to-where-the-supply-is</u>
- "Power Grid: What Is It and How Does It Work?," Just Energy, Dec. 10, 2021.
 - <u>https://justenergy.com/blog/power-grid-what-is-it-and-how-does-it-work/</u>
- [3] N. Dhanesha, "The futuristic plan to fix America's power grid," Vox, Dec. 02, 2021.
 - https://www.vox.com/recode/22812748/storm-hurricaneheatwave-climate-infrastructure-smart-grid-ai

Thank you! Questions?