Energy Optimization

Nicholas Rivera Christopher Rivera Carson VanDeursen power is out.

what happens next?

blackout.

Traditionally, power:

originates from source (power plants, turbines, and generators)

- reroutes to substations
- is delivered to respective areas via transformers
- unidirectional power flow
- targets specific areas (not bounded by industry

hence, smart grids.

Intelligent power grids with:

- Bidirectional power flow
- Self-monitoring energy distribution
- Sensors which can automatically troubleshoot in case of an outage (as opposed to manual restoration)
- Can be optimized using AI

User Rank	User Type	User Count				
1.	Industrial (Power Plant)	1				
2.	Gas Stations	10				
3.	Grocery Stores	9				
4.	Hospitals	2				
5.	Churches	30				
6.	Banks	9				
7.	Residential Communities	7				
8.	First Responder Departments	4				
9.	Medical Clinics	7				
10.	K12 Schools	12				

Belleview User Types

Main takeaways:

- Diverse collection of services
- Different characteristics
- Different energy consumption peak times.

Daily Energy Consumption for 10 Selected User Types

Initial Ranking:

<u>FLAWED</u>: Does not account for variable factors (e.g., generators).

Loss of power at hospital---->major impact

- Generators take 10-120 seconds to power on
- Lasts for 96 hours minimum *(OSHA regulations)*

Similar situation with banks, power plants, and first responder departments.

User Rank	User Type	User Count			
1.	Industrial / Power Plants / Utility	1			
2.	Gas Stations	10			
3.	Grocery Stores	9			
4.	Hospitals	2			
5.	Churches	30			
6.	Banks	9			
7.	Residential Communities	7			
8.	First Responder Departments	4			
9.	Medical Clinics	7			
10.	K12 Schools	12			

Operationalizing Priorities: our methodology.

Aim:

- 1. Create a system that can actively reorder a priority list when given various factors to consider.
- 2. Use statistics to quantify the importance of power restoration for each user type.

Methodology I

Determined by three **factors**:

NECESSITY FOR COMMUNITY (50%) ENERGY CONSUMPTION (15%) - Single unit consumption (25%) - Total unit consumption (75%) FINANCIAL IMPACT (35%) - On businesses (20%)

- On community (80%)

1. NECI	ESSITY
Туре	Points
Industrial Power Plant	10
Hospitals	9
First Responder Departmen	its 8
Banks	7
Gas Stations	6
K12 Schools	5
Grocery Stores	4
Residential Communities	3
Churches	2
Medical Clinics	1

Necessity for Community:

- Weighted 50% of total functional value.
- **Priority based on imminent need** (Excludes generators)
- Ranked 1-10
 - \circ $\,$ User type 1 awarded ten points $\,$
 - User type 10 awarded one point

Methodology II

Two main variables:

TIME: As days progress, certain industries become more essential to prevent economic fallout.

GUARANTEED REFUEL FOR GENERATORS: during natural disasters, refueling is a logistical nightmare, leaving essential industries in dire need.

Instituting these variables institutes an active change in priority list throughout time.

#DELTHITHÀ MOLKDOOK

wb = openpyxl.load_workbook(path, data_only=True)

#Defining Sheet ws = wb["Sheet1"]

Time = float(input("Input Simulation Duration (In Days of quarter increments): "))
Quarters = int(Time * 4)

Gen_Status = str.upper(input("Do you wish for the simulation to account for functioning generators? [Y/N] "))

print("")

```
if Gen_Status == "Y":
    Refuel_Days = int(input("How Many days of refuel are expected? "))
```

Results.

12:00 AM - 5:59 AM - Adjustment				6:00 AM - 11:59 AM - Adjustment							
User	Disaster Power Distribution (% Max)	Distributed Power (kW)	Normal Ma (kW)	ax Power Demand from 12A-6A	Power Allocation Difference (kW) from	User	Disaster Power Distribution (% Max)	Distributed Powe	Distributed Power (kW) 1457.6		Power Allocation Difference (kW) from 12A-6A
4	7.40	600.0		400.0	12A-6A	1	15.32	1457.6			16.6
1	7.19	683.8		433.8	250.0	2	3.63	345.6		335.6	10.0
2	5.65	537.7	287.7		250.0	3	39.34	3742.9		3737.9	5.0
3	19.59	1864.1		1614.1	250.0	4	0.00	0.0		5103.1	-5103.1
4	31.31	2979.2		2729.2	250.0	5	5.39	512.5		502.5	10.0
5	6.69	636.8		386.8	250.0	7	6.10	580.1		007.0	10.0
6	6.61	628.8		378.8	250.0	8	1.01	0.0		86.2	-097.0
7	8.37	796.0		546.0	250.0	9	0.74	70.5		60.5	10.0
8	3.33	316.4		66.4	250.0	10	28.47	2708.8		2698.8	10.0
9	2 50	237.9		31.4	206.5		100.00	9514.18		15433.56	
10	9.76	833.8	622.9		200.0			12:00 PM - 5:59 PM - Adjustment			
10	100.00	9514.49	-	7107.00	200.0						Power Allocation
6:00 PM - 11:50 PM - Adjustment					User	User Disaster Power	Distributed Power (kW)		hax Power Demand	Difference (kW) from	
0.00 FM - 11.55 FM - Aujusunent		Normal Max Power	Power Allocation		Distribution (% Max)			om 12A-6A	12A-6A		
User	Disaster Power	Distributed Power	(KW) Demand		Difference (kW) from	1	33.45	3182.5		1489.4	1693.1
	Distribution (% Max)			from 12A-6A	12A-6A	2	2.93	279.0		274.0	5.0
1	14.424	1372.3		1362.3	10.0	3	39.60	3767.6		3761.4	6.2
2	3.074	292.5		282.3	10.2	4	0.00	0.0		51/0.9	51/0.9
3	20.954	1993.6		1983.6	10.0	4	0.00	0.0		0145.0	-5145.0
4	19.910	1894.3		3096.5	-1202.2	<u>р</u>	6.46	614.3		609.3	5.0
5	6.818	648.7	648.7		10.0	6	6.01	5/1.8		566.8	5.0
6	4.616	439.2		429.2	10.0	7	9.66	919.5	914.5		5.0
/	7.517	/15.2	/15.2		10.0	8	1.20	114.2		109.2	5.0
8	1.340	127.5	127.3		10.0	9	0.69	65.7		60.7	5.0
10	20.836	40.7	40.7		10.0	10	0.00	0.0		2819.3	-2819.3
10	100.000	9514.19	9514.19		1010		100.00	9514.62		15754.43	

Distribution of Microgrids.

Conclusion.

Using smart grids, we prioritized out user type priority list by

- Creating a numerical methodological system to operationalize and quantify imminent need
- Using AI to prioritize diverting power to local industries not only dependent on the day, but also the time of day.
- Optimizing smart grids to prevent power overload.

References

[1] "Hospital Backup Generator Requirements," Woodstock Power Company, <u>https://woodstockpower.com/blog/what-are-the-requirements-for-hospital-backup-generators/#:~:text=In%20general%2C%20hospitals%20must%20have,generator%20for%20powering%20necessary%20equipment (accessed Nov. 8, 2024).</u>

[2] "Brownouts and blackouts: Causes, effects, and best solutions," California Commercial Generator Sales, Rental, Maintenanæ & Service, https://www.gotpower.com/brownouts-and-blackouts/ (accessed Oct. 21, 2024).

[3] "Power grid: What is it and how does it work?," Just Energy, <u>https://justenergy.com/blog/power-grid-what-is-it-and-how-does-it-work/</u> (accessed Oct. 21, 2024).

[4] M. Brain and D. Roos, "How Power Grids Work," HowStuffWorks Science, <u>https://science.howstuffworks.com/environmental/energy/power5.htm</u> (accessed Oct. 16, 2024).