Rattlers Power Belleview

The Rad Rattlers

Mentor: Lindsi Baugher

Rowyn Picard, Amya Hernandez, Briana Stephens, and Zachary Santos

1

The Rad Rattlers

Traditional Power Grids:

Traditional power grids have been used for decades, but they are known to have a few disadvantages.

Disadvantages:

On a tradition grid, outages are not made known to the utility company until they are called in. After being called in, with a tradition grid, a team must be sent out to diagnose the problem. Traditional grids are a few main power plants, which limits their ability to distribute power.

Smart Grids:

A smart power grid is new technology that consists of controls, smart meters, computers, and automated systems to better provide for current and future energy needs.

Advantages:

Smart grids automatically notice and diagnose the problem during an outage.

They can power new technologies that are being produced and support substantiable energy. They have greater power distribution and minimize the effect of outages at a single plant.

User Types Within 2-mile radius of Belleview High School.

Mapping the System

LEGEND:

Blue: Schools Gray: Trails Green: Residential Yellow: Utilities Red: Vet

User Type	Daily Cycle Notes	Yearly Cycle Notes
Residential	Peaks during the day	Peaks during the summer
Church	Peak during the day	Peaks during spring and winter and especially during holidays.
Medical center	Peaks during the day	Peaks during summer
Hospital	Stays consistent throughout the day	Peaks during summer
School	Peaks during the day	Dips during summer and holidays
Pharmacy	Peaks during the day	Peaks during summer
Supermarket	Peaks during the day	Peaks during summer and holidays
Bank	Peaks during the day	Peaks during the beginning and end of each month
Gas station	Peaks during the day	Peaks during summer and holidays
Veterinarian Offices	Peaks during the day	Peaks during summer
Fire rescue	Peaks during the day	Peaks during summer
Aquatic Center	Peaks during the day	Peaks during summer
City hall	Peaks during the day	Peaks during summer
Police Department	Peaks during the day	Peaks during summer

Daily and Yearly Cycle

	A Buildings annual use of energy per unit area	Table 1: Average Power Load			
User Type	Power Load per Area (kBtu/ ft²)	Power Load per Area (kWh/ft²)	Power Load per Area (kWyr/ ft²)	Average Load Area (ft²)	Total Power Load (kWyr)
Office	116.4	34.11	0.00389	63,000	245
Church	58.4	17.121	0.00195	3000	6
Medical center	232.8	68.23	0.00779	326000	2539.54
Hospital	426.9	125.12	0.01428	326000	4655.28
School	104.4	30.598	0.00349	74000	258.26
Pharmacy	145.8	42.732	0.00488	14000	68.32
Supermarket	444.0	130.13	0.01486	50000	743.0
Trail	N/A	N/A	N/A	N/A	N/A
Bank	209.9	61.52	0.00702	4,066	29
Gas station	883.5	258.94	0.02956	7000	206.92
Veterinarian offices	145.8	42.732	0.00488	63000	307.44
Police department	124.9	36.61	0.00418	11000	45.98
Aquatic Center	112.0	32.825	0.00375	7000	26.25
City Hall	109.6	32.122	0.00367	40000	146.8
Fire Rescue	124.9	36.606	0.00418	14000	58.52

High Priority Power Load

	Power Load per area (kBtu/ft2)	Power Load per area (kWH/ft2)	Power Load per area (kWyr/ft2)	Total Power Load (kWyr)
Emergency room	232.8	68.23	0.00779	2539.54
Veterinarian Hospitals	145.8	42.732	0.00488	307.44
Gas Station	883.5	258.94	0.02956	206.92
Pharmacy	145.8	42.732	0.00488	68.32

Most gas stations do not have generators in our area.

By raising their priority, people can get gas for their own generators.

Things That We Considered

Because most people in Belleview have generators, with the gas, they will already have power and we can focus on other things.

Things That We Considered

Features of Our Design

High	Emergency room (1)	4655	24/7 (constant) and cycle more during summer.
High	Medical center (2)	5,080	6am-11pm cycle to lower at other times and more during summer.
High	Pharmacy (1)	68	24/7 (constant)and cycle more during summer.
High	Veterinarian Hospital (2)	614	7am-10pm cycle lowers any other time but is still there in case of emergencies and cycle more during summer.
Mid	Banks (4)	58	7am-6pm, and cycle more during the beginning and end of each month, and cycle to a lower power any other time
Mid	Us Postal Service (1)	46	24/7 (constant) and cycle more during summer.
Mid	Restaurants (5)	1055	6am-10pm and cycle to lower amount at any other time.
Mid	Supermarkets (2)	1486	8am-11pm, cycle more during summer and holidays, and cycle to lower amount during non-business hours.
Mid	Schools (3)	774	6am-5pm lowers supply during summer and at any other time but is still there in case of emergency (is a shelter).
Low	Churches (3)	18	9am-5pm, cycle more during spring and winter and during holidays, and cycle to a lower amount any other time but there for emergencies (used for shelter).
Low	Residential areas	30	24/7 (constant)
Least	Trails (2)	6	After dark for light- is not a high priority-
High	Gas Station	414	5am-12am cycle to lower amount supply at any other time.

Final Design

Places to ensure power are sent to

- Necessities
- Fire and rescue places with water for damage control.
- Places that don't have generators.

Other special features it focuses on

- Safety
- Getting power to places as fast as possible.
- Sending more or less power during specific times and cycles.

References

- [1] Ivey, A. (2023, March 23). 7 artificial intelligence examples in Everyday Life. Cointelegraph. <u>https://cointelegraph.com/news/7-artificial-intelligence-examples-in-everyday-life</u>
- [2] Kornowski, R. (2023, February 16). How artificial intelligence ai will change the future of Health Care: Opinion. North Jersey Media Group. <u>https://www.northjersey.com/story/opinion/2023/02/10/aiwill-changethe-future-of-healthcare/69885537007/</u>
- [3] *How ai will permanently disrupt the education industry*. Gold Penguin. (2023, September 4). <u>https://goldpenguin.org/blog/how-ai-will-permanently-disrupt-the-education-industry/</u>
- [4] Smart Grid: The smart grid. Smart Grid: The Smart Grid | SmartGrid.gov. (2019, December 16). https://smartgrid.gov/the_smart_grid/smart_grid.html
- [5] Michaelson, H. (2021, February 24). Smart grids: Updating the traditional grid. Medium. <u>https://medium.com/sjei/smart-grids-updating-the-traditional-grid-</u> <u>7979bed47761#:~:text=The%20traditional%20power%20grid%20moves,of%20energy%20into%2</u> <u>0the%20grid</u>.
- [6] *How the smart grid keeps your power on*. What is Smart Energy? (n.d.). <u>https://whatissmartenergy.org/how-the-smart-grid-keeps-your-power-on</u>
- [7] *Smart Grid and power quality*. What is Smart Energy? (n.d.-b). <u>https://whatissmartenergy.org/smart-grid-and-power-quality</u>
- [8] Iea. (n.d.). Smart grids. IEA. https://www.iea.org/energy-system/electricity/smart-grids
- [9] Photo image. <u>https://www.allposters.co.uk/-sp/Row-of-Telephone-Poles-at-Sunset-in-Rural-North-Dakota-Posters i6113339</u> .htm. (Accessed (November 8, 2023)

Thank you! Any questions?