The Turing Group

Representing Cypress Creek Group 3 Noah Mercedes, Rafael Silva, Rishi Pinapaka, Jesus Machado Guided by: Michael Roberts

Background Information

- Traditional grids are designed to deliver energy to consumers through a few wires.
- This design is vulnerable since one failure may result in a failure to many consumers, failing to be fault tolerant and produce outages more often.

The solution? Smart Grids

- Smart grids are a more efficient design by introducing artificial intelligence to detect and reroute power depending on the situation.
 - Perform continuous self-monitoring
 - Perform self-healing operations through self-reconfiguration
 - Communicate with neighboring grids
 - Automatically alert humans for manual assistance
- Using Artificial Intelligence can help us manage grids in a <u>smart</u> way.

Design Process

Choosing Our User Types

- Choosing user types allows prioritizing energy consumers in the community.
- Prioritization on <u>emergency necessity</u> and <u>heavy reliance</u> facilities.
 - Public services
 - Extreme common usage
- Other facilities are not immediately required and can be supplied energy later.

The User Types

School	Grocery Store
Fire Station	Hospitals/ER
Bank	Senior Living Center
Gas Station	Police Station
Water Systems	Penitentiary

Public Services

- Hospitals
- Fire Stations
- Police Stations
- Penitentiaries
- Water Systems

Conflicts

- Some user types do not exist within a 2.5m radius
- Some user types exist seldomly
- No clear categorization of ordered prioritization
- Some locations are just regular houses

Heavy Reliance

- Gas Stations
- Senior Living Center
- Banks
- Grocery Stores
- School

The NEW! User Types

Schools (6)	Grocery Stores (2)
Fire Stations (1)	Restaurants (12)
Banks (1)	Residential Zones (15)
Gas Stations (7)	Auto Dealerships (0)
Water Systems (1)	Outpatients (4)

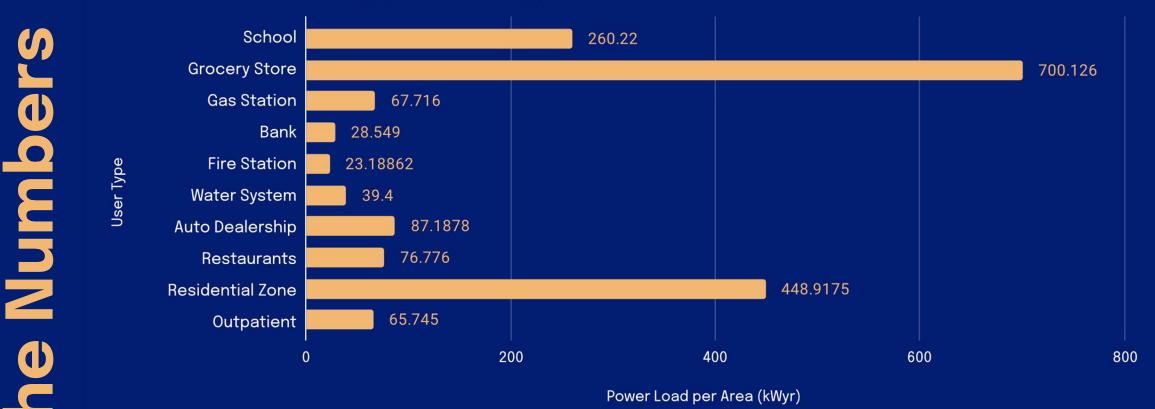
Restaurants

- More present and uses a moderate amount of energy
- 24/7 usage; quick service restaurants

Residential Zones

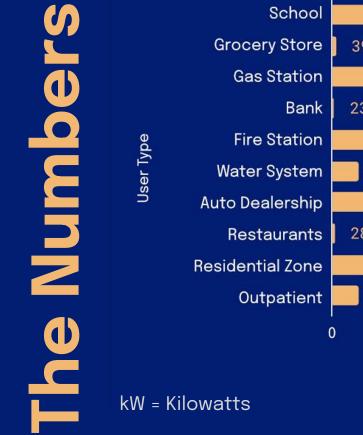
• Many, many homes in the area

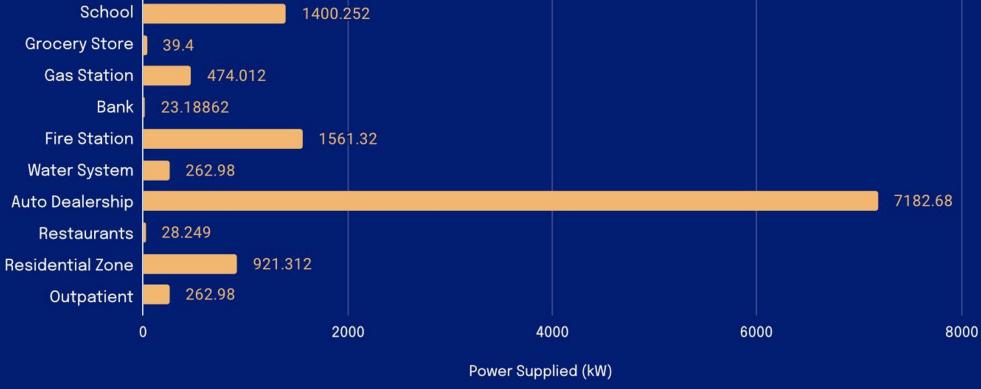
Auto Dealerships


• More present and use a massive amount of energy

Outpatients (pharmacies and clinics)

• Medical care and uses a moderate amount of energy


- Power load represent the average energy used by each user type.
- Supplied power represents the average energy of the user type multiplied by the amount of occurrences it has in the radius.
- We can use these measurements to calculate the total power that our grid will be required to produce and the total energy consumption within our circle.


Total Power Load (kWyr) per User Type

kWyr = Kilowatts per year

Supplied Power (kW) per User Type in the 1.5m radius

Total kW: 11,893.39362

- A ranking system will help us better understand how the power grid will be designed to deliver energy to specific users.
- Factors: Emergency necessity, energy consumption, reliance, and quantity.
- Highest priority: Requires immediate access.
- Moderate priority: Immediate supplementation not required.
- Lowest priority: Not immediately necessary at all; may be postponed.

Legend (active most...):

- * During the day
- 🔮 24/7

Water Systems
 Fire Stations
 Gas Stations

1 | Highest

Schools
 Outpatients
 Grocery Stores
 Residential Zones

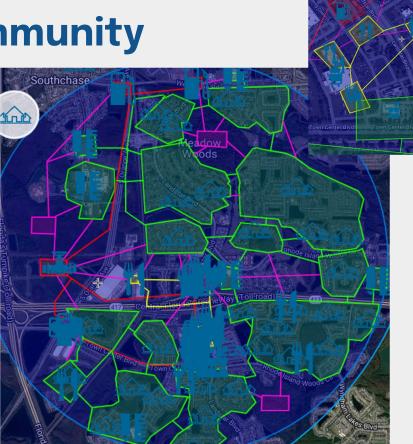
2 | Moderate

✤ Banks
✤ Restaurants
✦ Car dealerships

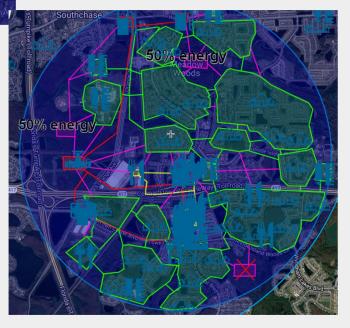
3 | Lowest

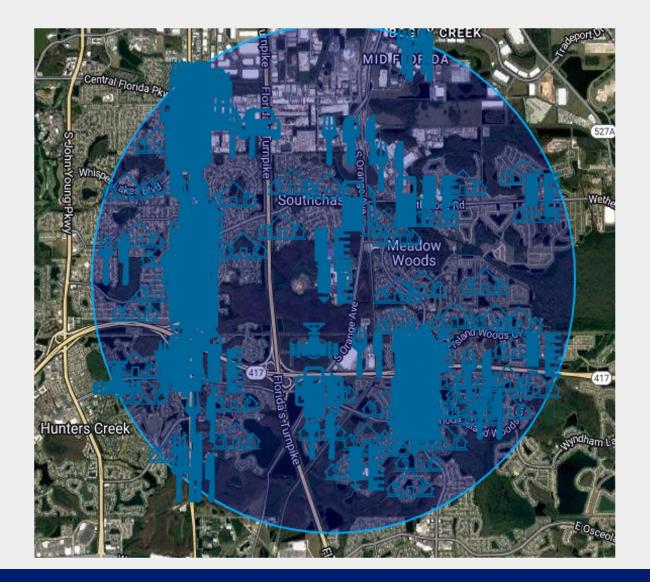
Powering The Community

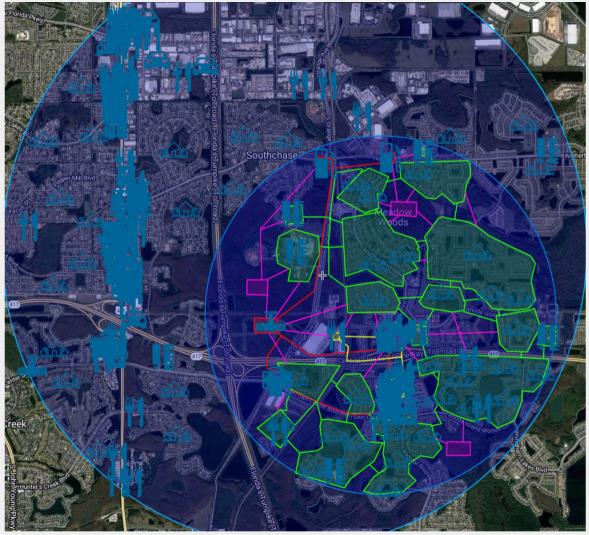
13


Analysis of our Community

In order to implement redundancy, we created a system in which there are multiple nodes that connect every priority level.


- Creates fault tolerance within the smart grid.
- Allows for the same energy output throughout the grid even if one or more nodes fail.
- Backup battery for temporary power. **Legend:**


Red: Highest Yellow: Moderate Green: Lowest


Pinkish Purple: Node Grid

Conclusion

Conclusion

- By collecting data on energy user types, we can create power grid designs oriented to the data to accurately and effectively supply power in a community.
- We can draw conclusions from the data to abstract and better our understanding of the community to make more informed decisions in designing.
- We can use this information to program artificial intelligence into power grids to continuously manage and resolve issues in an efficient manner.
- Finally, to ensure redundancy and fault tolerance, we can create a distributed system of interconnected power lines and nodes to better prevent outages.

Electricity Pylon Silhouette <u>pixabay.com/images/id-5004309</u> Free to use under the Pixabay Content License

Energy and user type metrics <u>energystar.gov</u>

Avg. area of a gas station <u>statista.com/statistics/1016023/convenience-store-square-footage-us</u>

Avg. area of a house <u>census.gov/construction/chars/highlights.html</u>

Avg. number of residents in a neighborhood <u>eyeonhousing.org/2016/10/new-study-describes-</u> <u>characteristics-of-u-s-subdivisions</u>

Avg. water plant size <u>eia.gov/consumption/commercial/reports/2012/water</u>

Avg. area of an outpatient <u>matthews.com/whats-next-for-drugstores</u>

Avg. area of an auto dealership *rsmeans.com/model-pages/car-dealership*

Avg. area of a convenience store <u>statista.com/statistics/1016023/convenience-store-square-footage-us/</u>

Avg. fire station size <u>rfpwizard.mrsi.erdc.dren.mil/MRSI/content/cos/hnc/fs/Librar</u> <u>y/Standard%20Designs/Standard Design Fire Station Mar</u> <u>2021_.pdf</u>

Power Grids and Energy Distribution ptc.mse.ufl.edu/design-contest-activities/background

Sources & References

Cypress Creek Group 3: Noah Mercedes, Rafael Silva, Rishi Pinapaka, Jesus Machado Guided by: Michael Roberts

Thank you. Any Questions?